II PROVA SCRITTA DI CHIMICA

(Corso di Laurea in Fisica - a.a. 2005/06)

1) Calcolare quanto cloruro di sodio deve essere aggiunto a 5.0 L di acqua per abbassare il punto di congelamento a -10.0 °C.

 $K_{cr} = 1.86 \text{ K KG MOL}^{-1}$.

In soluzione NaCl si dissocia secondo la reazione:

$$NaCl(s) \xrightarrow{H_2O(l)} Na^+(aq) + Cl^-(aq)$$

Pertanto da una mole di solido si ottengono due moli di soluto, ovvero il coefficiente di dissociazione è i=2. Assumendo che la densità di H_2O sia 1.00 g/mL e che m sia la molalità di NaCl(s) si procede come segue:

$$\Delta T = K_{cr} \times 2m_{NaCl} \ da \ cui \ m_{NaCl} = \frac{\Delta T}{2 \times Kg_{solvente}} = \frac{10.0K}{2 \times 1.86K \ Kg \ mol^{-1}}.$$
 Tenendo presente che

$$m_{NaCl} = \frac{n_{mol}}{Kg_{solvente}} = \frac{\frac{g_{NaCl}}{PM_{NaCl}}}{Kg_{H_2O}}$$
 e pertanto

$$g_{NaCl} = \frac{\Delta T}{2 \times K_{cr}} \times PM_{NaCl} \times Kg_{H_2O} = \frac{10.0}{2 \times 1.86} \times 58.35 \times 5 \cong 780 g$$

2) H₂ e Br₂ sono in equilibrio tra di loro secondo la reazione:

$$H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g)$$

Tenendo presente che $\Delta H_{rz}^0 = -68 \, kJ \, / \, mol$, rispondere ai seguenti quesiti, specificando se la variabile aumenta (**a**), diminuisce (**d**) o resta invariata (**i**):

VARIAZIONE	[Br ₂]	[HBr]	K _c
Viene aggiunto H ₂	D	a	i
Viene aumentata la temperatura	A	d	d
Viene aumentato il volume del recipiente	i	i	i

Si noti che
$$\ln K_c = -\frac{\Delta G_{rz}^0}{RT} = -\frac{\Delta H_{rz}^0}{RT} + \frac{\Delta S_{rz}^0}{R}$$
 e pertanto all'aumentare della temperatura la K_c

diminuisce per una reazione esotermica ($\Delta H_{rz}^0 < 0$). Inoltre, la reazione non comporta variazione di volume

3) Metilamina (CH₃NH₂) è una base debole con K_b = 5.0 x 10^{-4} M. Scrivere la reazione di dissociazione in acqua e calcolare il pH di una soluzione 0.25 M.

$$CH_3NH_2(aq) + H_2O(I)$$
 $CH_3NH_3^+ + OH^-$

In 0.25 M 0 [OH^-]_w

Eq. 0.25 M - [CH₃NH₃⁺] [CH₃NH₃⁺] \cong [OH]

Pertanto, all'equilibrio si ottine:

$$K_B = \frac{[CH_3NH_2^+] \times [OH^-]}{[CH_3NH_2]} = \frac{[OH^-]^2}{0.25 - [OH^-]}$$
 da cui approssimando si ottiene
$$[OH^-] = \sqrt{c_0 \times K_B} = \sqrt{0.25 \times 5 \times 10^{-4}} M \text{ da cui } [OH^-] = 0.0112 \text{ e quindi}$$

$$pH = 14 - pOH = 14 - 1.95 = 12.05 \cong 12$$

Si noti che l'errore è circa 4%, tuttavia tenendo presente che i valori sono dati con 2 cifre significative, si può accettare la soluzione approssimata.

Risolvendo infatti l'equazione quadratica si ottiene $[OH^-] = 0.0109$ che è poco differente e il pH calcolato risulta 12.04 che, entro le cifre significative considerate, è uguale al valore precedente. Pertanto se fosse richiesto di calcolare $[OH^-]$ con precisione più elevata e avendo dati di partenza con un maggiore numero di cifre significative, sarebbe necessario risolvere l'equazione quadratica.

4) Elencare le seguenti soluzioni 0.1 M in ordine di pH crescente: a) cloruro di sodio; b) ammoniaca; c) acido cloridrico, d) acido acetico (CH₃COOH), e) soluzione contenente ammoniaca e cloruro d'ammonio ambedue 0.1M. Giustificare brevemente il vostro ragionamento (scrivere la reazione chimica).

Osservazioni:

a) NaCl proviene da acido (HCl) e base (NaOH) forti e pertanto non idrolizza $NaCl(s) \xrightarrow{H_2O(l)} Na^+(aq) + Cl^-(aq)$

b) Ammoniaca è un composto neutro e quindi una base di Lewis debole in quanto possiede un doppietto libero.

$$NH_3(aq) + H_2O(I)$$
 $NH_4^+ + OH^-$

c) Acido cloridrico è un acido forte in quanto il legame H-Cl è polare ed relativamente debole (negli idracidi del 17 gruppo la forza di legame scende nel gruppo)

$$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$$

d) Acido Acetico è un ossiacido debole in quanto l'idrogeno è legato ad un gruppo che esercita un debole capacità di polarizzare il legame O-H in quanto il carbonio è poco elettronegativo ed inoltre c'è un solo gruppo C=O (cfr formula di struttura.

e) l'aggiunta dell'acido coniugato (NH_4^+) alla base debole (NH_3) sposta l'equilibrio di cui al punto b verso sinistra (effetto dello ione al comune – è una soluzione tampone) e pertanto l'ambiente risulta meno basico rispetto al caso b)

$$^{'}$$
NH₃(aq) + H₂O(I) $^{'}$ NH₄+ + OH-

Pertanto, a parità di concentrazioni iniziali, il pH cresce come segue:: $HCl < CH_3COOH < NaCl < NH_3/NH_4Cl < NH_3$

5) Calcolare il valore della costante di equilibrio per la reazione:

$$Zn(s) + Ni^{++}(aq) = Zn^{++}(aq) + Ni(s)$$

e verificare il verso spontaneo della reazione in condizioni standard. E° $Zn^{+2}/Zn = -0.76$ V, E° $Ni^{+2}/Ni = -0.25$ V)

$$E^{\circ} Zn^{+2}/Zn = -0.76 V, E^{\circ} Ni^{+2}/Ni = -0.25 V$$

Dalla equazione di Nernst so osserva che all'equilibrio $\Delta E = 0$ e pertanto:

$$\Delta E = \Delta E_{rz}^{0} - \frac{RT}{nF} \ln Q = \Delta E_{rz}^{0} - \frac{0.059}{n} \log Q = 0 = \Delta E_{rz}^{0} - \frac{0.059}{n} \log K_{eq}$$

$$\log K_{eq} = \frac{n \times (E_{rid1}^{0} - E_{rid2}^{0})}{0.059} = \frac{n \times (E_{Ni^{++}/Ni}^{0} - E_{Zn^{++}/Zn}^{0})}{0.059} = \frac{2 \times (-0.25 - (-0.76))}{0.059} = 17.3 \cong 17$$

$$K \cong 1 \times 10^{17}$$

Pertanto la reazione procede con ossidazione di Zn ed è completa:

$$Zn(s) + Ni^{++}(aq) Zn^{++}(aq) + Ni(s)$$