next up previous contents
Next: 2000-07-05: ceria-gadolinia Up: Aliovalent cation doped ceria Previous: 2000-06-27: summary for ceria-zirconia-{Y/Gd/La}


2000-07-04: ceria-yttria

GOAL

From 2000-06-27 it appears that in the system $Ce_{0.5}D_{0.5}O_{1.75},\ D=Y,Gd,La$, the $Ce^{4+}/Ce^{3+}$ reduction energy is more favorable than in the corresponding $Ce_{0.5}Zr_{0.5}O_2$ system. So let's do some calcs without zirconia.

This refers to the $Ce_{(1-x)}Y_xO_{2-\frac{x}{2}},\ 0.1\le{}x\le0.9$ system.

Results

$Ce^{4+}/Ce^{3+}$ reduction energy

The $Ce^{4+}/Ce^{3+}$ reduction energy was evaluated according to the procedure outlined in section 2000-06-21: even if the system does not contain zirconia, the mean field analysis remains identical.

\begin{tabular}{D{.}{.}{-1}D{.}{.}{-1}D{.}{.}{-1}D{.}{.}{-1}}
\multicolumn{1}{c}...
...& -6.45868031 \\
90 & -26.46348385 & 8.46360515 & -7.16322902 \\
\end{tabular}

\begin{tabular}{D{.}{.}{-1}D{.}{.}{-1}D{.}{.}{-1}}
\multicolumn{1}{c}{{$100x$}}
...
...0 & 10.73351121 & 4.41278808 \\
90 & 10.11445376 & 3.74186078 \\
\end{tabular}

\begin{center}\vbox{\input{2000-07-04-01.pslatex}
}\end{center}

Lattice parameter

\begin{tabular}{D{.}{.}{-1}D{.}{.}{-1}}
\multicolumn{1}{c}{{$100x$}}
&\multicolu...
...5.376214 \\
70 & 5.365364 \\
80 & 5.353741 \\
90 & 5.341245 \\
\end{tabular}

The following compares presently calculated lattice parameters with the empirical equation of Kim (1989), which, for the present case $Ce_{(1-x)}Y_xO_{2-\frac{x}{2}}$, reads as:

\begin{eqnarray*}
d_{Ce}&=&0.5413\\
&&+\left(0.0220(r_{Y^{3+}}-r_{Ce^{4+}})+0.00015(z_{Y^{3+}}-z_{Ce^{4+}})\right)100x
\end{eqnarray*}



with $d_{Ce}$ and the $r$'s in $nm$, or:

\begin{eqnarray*}
d_{Ce}&=&5.413\\
&&+\left(0.0220(r_{Y^{3+}}-r_{Ce^{4+}})+0.0015(z_{Y^{3+}}-z_{Ce^{4+}})\right)100x
\end{eqnarray*}



with $d_{Ce}$ and the $r$'s in Å.

The values of the various parameters are (Shannon, 1976):

\begin{tabular}{rD{.}{.}{-1}l}
{$r_{Ce^{4+}}$}&0.97&{\it {}\AA}\\
{$r_{Y^{3+}}$}&1.019&{\it {}\AA}\\
{$z_{Ce^{4+}}$}&4&\\
{$z_{Y^{3+}}$}&3&\\
\end{tabular}

\begin{center}\vbox{\input{2000-07-04-02.pslatex}
}\end{center}

The accord does not seem to be very good, at least not as good as previously found.

Note that $d_{Ce}$ decreases as the fraction of $Y_2O_3$ increases, notwithstanding that $r_{Y^{3+}}>r_{Ce^{4+}}$. This should be due to the creation of oxygen vacancies. This is handled by the $0.00015(z_{Y^{3+}}-z_{Ce^{4+}})$ term in Kim's model: this is negative for trivalent dopants so that it prevails if the difference in radii is not large enough.

Lattice energy

\begin{tabular}{D{.}{.}{-1}D{.}{.}{-1}}
\multicolumn{1}{c}{{$100x$}}
&\multicolu...
...
70 & -72.37780461 \\
80 & -68.17980348 \\
90 & -64.10894694 \\
\end{tabular}

\begin{center}\vbox{\input{2000-07-04-03.pslatex}
}\end{center}

Representative input file


opti conp defect

maxcyc opt      200
maxcyc fit      200
dump every   1 ce4-30.dump
title
Ce4+ impurity
end

cell
   5.329267   5.329267   5.329267  90.000000  90.000000  90.000000

fractional    5
   Ce4  core  0.0000  0.0000  0.0000  -3.7000  0.7000  0.0000 
     Y  core  0.0000  0.0000  0.0000   3.0000  0.3000  0.0000 
     O  core  0.2500  0.2500  0.2500   0.0770  0.9250  0.0000 
   Ce4  shel  0.0000  0.0000  0.0000   7.7000  0.7000  0.0000 
     O  shel  0.2500  0.2500  0.2500  -2.0770  0.9250  0.0000  
                                                     
space
225

size            9.0  20.0000
centre          0.00 0.00 0.00
impurity  Ce4   0.00 0.00 0.00

species   2
Ce3    core   -4.700000
Ce3    shel    7.700000

buck
Ce4   shel O     shel  1986.8300     0.351070  20.400      0.000 15.000
Y     core O     shel  1345.1000     0.349100    0.0       0.000 15.000
Ce3   shel O     shel  1731.6181     0.363720   14.433     0.000 15.000
O     shel O     shel 22764.300      0.149000   27.890     0.000 15.000
spring
Ce4    291.75000
Ce3    291.75000
O      27.290000


next up previous contents
Next: 2000-07-05: ceria-gadolinia Up: Aliovalent cation doped ceria Previous: 2000-06-27: summary for ceria-zirconia-{Y/Gd/La}