Gabriele Balducci
last update: August 18, 1999
NOTE: the ``INVERSE'' part of the Buckingham potential is taken ``as is'': this means that the minus sign must be included in the input (see below and the ``SHELL user's guide'')
TITLE ceria structure optimization
LATTICE CP 5.429078
PARTICLES
Ce-shel 0.0 7.7
Ce-core 140.12 -3.7
O-shel 0.0 -2.077
O-core 16.0 0.077
BASIS
Ce-core 0.0 0.0 0.0
Ce-core 0.5 0.5 0.0
Ce-core 0.5 0.0 0.5
Ce-core 0.0 0.5 0.5
O-core 0.25 0.25 0.25
O-core 0.75 0.25 0.25
O-core 0.75 0.75 0.25
O-core 0.25 0.75 0.25
O-core 0.25 0.25 0.75
O-core 0.75 0.25 0.75
O-core 0.75 0.75 0.75
O-core 0.25 0.75 0.75
#
Ce-shel 0.0 0.0 0.0
Ce-shel 0.5 0.5 0.0
Ce-shel 0.5 0.0 0.5
Ce-shel 0.0 0.5 0.5
O-shel 0.25 0.25 0.25
O-shel 0.75 0.25 0.25
O-shel 0.75 0.75 0.25
O-shel 0.25 0.75 0.25
O-shel 0.25 0.25 0.75
O-shel 0.75 0.25 0.75
O-shel 0.75 0.75 0.75
O-shel 0.25 0.75 0.75
POTENTIALS
EXPO Ce-shel O-shel 1986.83 0.351070 0.0 10.0
INVERSE Ce-shel O-shel -20.4 6.0 0.0 10.0
EXPO O-shel O-shel 22764.300 0.149000 0.0 10.0
INVERSE O-shel O-shel -27.89 6.0 0.0 10.0
SPRING Ce-shel Ce-core 291.75 0.0 0.2
SPRING O-shel O-core 27.29 0.0 0.2
CUTSHELL 0.3
OPTION
MESH 0
TEMP 0.0
PRESS 0.0
RUN THERMO
END
CONTROL:
pure ceria, to check the SHELL code
zero
pres 0.001013 kbar (0.001013 kbar=1.0 atm)
steps 1
equilibration steps 0
timestep 0.002 ps
multiple timestep 1
scale 1
cutoff 8.00 # maximum allowed value from genlat
delr 1.0
rdf sampling every 1 steps
print rdf
eps 1.0
ewald precision 1.0e-5
ensemble nve
stats 1
trajectory nstraj 1 istraj 1 keytrj 0
stack 1
job time 10700
close time 300
finish
FIELD:
CeO_2
units eV
molecular types 2
CeriumFour
nummols 108
atoms 1
Ce4 140.120 4.0
finish
Oxygen
nummols 216
atoms 2
O 14.40000 0.077 1
O_s 1.600000 -2.077 1
shell 1
1 2 27.29
finish
vdw 2
Ce4 O_s buck 1986.830000 0.351070 20.40000
O_s O_s buck 22764.300 0.149000 27.89000
CLOSE
A good accord is found.
Five runs with increasing MESH values were performed, each
consisting of an OPTIMISE CELL optimization at and
Gibbs free energy and lattice constant seem to converge properly.
We simulate the ceria-zirconia solid solution by creating an hybrid cation with properties scaled according to the composition.
If we call:
![]() |
the hybrid cation |
![]() |
zzirconia fraction in the solid solution |
![]() |
molar mass of species ![]() |
![]() |
shell charge of species ![]() |
![]() |
Buckingham potential for the interaction of ![]() |
![]() |
spring potential between core and shell of ![]() |
then we have:
( We write , so that
's are negative, as
SHELL requires that)
The values to be combined are:
These are the values of the hybrid properties as a function of the zirconia fraction:
The following compares SHELL vs GULP for a static single point energy calculation on the complete range of compositions:
![]() |
GULP | SHELL | |
10 | -40778.0111 | -40777.89813 |
![]() |
20 | -40917.8574 | -40917.74343 |
![]() |
30 | -41065.2598 | -41065.14482 |
![]() |
40 | -41219.8563 | -41219.74031 |
![]() |
50 | -41382.9012 | -41382.78406 |
![]() |
60 | -41555.2593 | -41555.14099 |
![]() |
70 | -41738.1029 | -41737.98320 |
![]() |
80 | -41932.2041 | -41932.08300 |
![]() |
90 | -42139.1513 | -42139.02862 |
![]() |
Same as above, but in a graphical form:
Structural determinations of monoclinic zirconia (baddeleyte) can be found in references smith:65, mccullough:59 and adam:59.
The following are the structural parameters from ref. smith:65:
The following compares SHELL and GULP results for a static cell only optimisation:
The following compares SHELL and GULP results for a static, symmetry constrained (cell+coordinates) optimisation: