
Chimica nucleare

Massa atomica

- Tabella periodica: Le masse degli elementi sono espresse in unità di massa atomica (uma – amu).
- 1 amu = 1/12 massa di ${}_{6}^{12}C$.
- · Isotopo 12 del carbonio

Numero di massa A = N + Z 6 C

Isotopi: abbondanza naturale

M è una media pesata:

$$\overline{M} = \sum p_i m_i$$

- p_i = abbondanza naturale dell'isotopi i
- m_i = massa dell'isotopo i
- CI ha isotopi naturali 35 e 37: $35 \times p_1 + 37 \times p_2 = 35.453$

$$p_1 + p_2 = 1$$

da cui $p_1 = 0.75$

75% del CI in natura è isotopo 35.

Natura dell'atomo

- Diametro nucleo $\cong 10^{-2} \text{ pm}$
- Diametro atomo ≅ 100 500 pm

• Neutrone $\frac{1}{0}r$

• Protone

• Elettrone ${}_{-1}^{0}e$

1

Atomi – particelle elementari

Particella	Simbolo	Massa in amu (m _u)
Neutrone	${}_{0}^{1}n$	1.008665
Protone	¹ ₁ p	1.007265
Elettrone	0 -1	0.000549

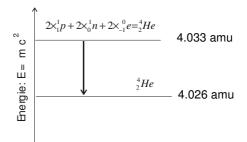
Massa dell'atomo è concentrata nel nucleo Volume dell'atomo è dato dagli elettroni

Atomo

- Supponiamo che un atomo p.e. idrogeno, abbia un raggio atomico dell'ordine di 10⁻¹⁰ m un raggio nucleare dell'ordine di 10⁻¹⁶ m. Rispondere ai seguenti quesiti:
- · a. Qual'è il volume dell'atomo
- b. Qual'è il volume del nucleo
- c. Qual'è la parte del nucleo espressa come percentuale del volume dell'atomo

Atomo

- La massa dell'atomo di idrogeno è circa 1.7 x 10⁻²⁷ kg, tenendo presente i risultati dell'esercizio precedente, calcolare:
- a. Qual'è la densità dell'atomo dell'idrogeno
- b. Qual'è la densità del nucleo di idrogeno (Ignorare la massa dell'elettrone)


Atomo

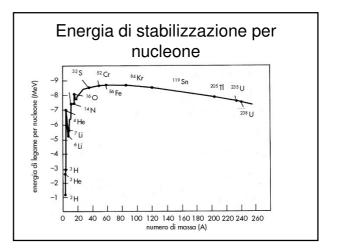
 La terra ha la massa di circa 6 x 10²⁴ kg. Se la terra avesse la densità del nucleo di idrogeno che raggio avrebbe. N.B. Il raggio terrestre è circa 6.4 x 10⁶ m.

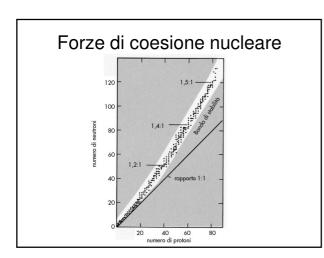
Perché esiste il nucleo?

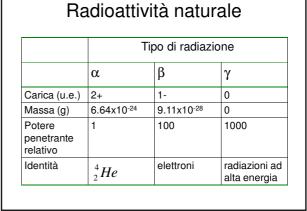
- Massa sperimentale ${}_{2}^{4}He = 4.002603$ amu
- Massa: $2x_1^1p + 2x_0^1n + 2x_{-1}^0e = {}_{2}^4He$
- $\bullet_2^4 He = 2x(1.007265 + 1.0086650 + 0.000549) = 4.032958$ amu

Perché esiste il nucleo?

• La formazione dell'atomo (nucleo) di elio crea un difetto di massa


Perché esiste il nucleo?


• Difetto di massa : energia liberata:


 $E = m \times c^2 = (0.030355 \times 1.661 \times 10^{-27} \, Kg \, / \, atom) \times (2.998 \times 10^8 \, ms^{-1})^2$ $=4.532\times10^{-12} J / atom$

 $E(j/mol) = 4.532 \times 10^{-12} (J/atom) \times 6.02 \times 10^{23} (atom/mol) = 2.22 \times 10^{12} J/mol$

Energia liberata dovuta a forze di coesione nucleare

Decadimento radioattivo

$$\alpha: {}^{210}_{84}Po \rightarrow {}^{206}_{82}Pb + {}^{4}_{2}He$$

$$\beta$$
: ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + \beta^{-}$ $({}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e)$

$$β^{-:} {}_{1}^{3}H \rightarrow {}_{2}^{3}He + β^{-} \qquad ({}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e)$$

$$β^{+:} {}_{6}^{11}C \rightarrow {}_{5}^{11}B + {}_{+1}^{0}e \qquad ({}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{+1}^{0}e)$$

$$\gamma: {}^{234}_{90}Th* \rightarrow {}^{234}_{90}Th + \gamma$$

Decadimento radioattivo Cinetica di I ordine $N = N_0 e^{-kt}$ $\frac{dN}{dt} = r = -kN$ $\frac{-dN}{N} = kdt$ $\ln \frac{N_0}{N} = kt$

Decadimento Radioattivo

$$N = N_0 e^{-kt}$$

Tempo di emivita – semivita : $\frac{N_0}{N} = 2$

$$\ln 2 = kt_{1/2}$$

$$t_{1/2} = 0.693/k$$

Datazione Carbonio-14

$${}_{7}^{14}N + {}_{0}^{1}n \rightarrow {}_{6}^{14}C + {}_{1}^{1}H$$

$$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$$

$$t_{1/2} = 5730 \, anni$$
 $R_0 = 15.3 \, dis \, / \, min \times g$

Datazione Carbonio

In un campione di carbone di legna antico fu trovata la velocità di 13.6 di disintegrazioni per minuto per grammo. Qual è l'età del carbone.

$$\ln \frac{N_0}{N} = kt = \ln \frac{kN_0}{kN} = \ln \frac{r_0}{r} = \ln \frac{15.3}{13.6} = kt = \frac{0.693}{t_{1/2}}t$$

da cui si ricava

$$t = \frac{5730}{0.693} \ln \frac{15.3}{13.6}$$
anni = 974 anni

Unità radiazione

Unità	Significato
Curie (Ci)	3.7 10 ¹⁰ disintegrazione sec-1 (dis. 1g Ra s ⁻¹)
Becquerel (Bq)	1 disintegrazione s ⁻¹
Gray (Gy)	1 J energia / 1kg tessuto vivente
Sievert (Sv)	Gray * qualità radiazione (α = 20; β = 1)

Valori massimi: 0.05 Sv/anno

3-4 Sv dose fatale

potassio-40 nel corpo: 0.2 mSv/anno

raggi cosmici: 1-3 mSv/anno